
221

Appendix B

B. IRIX sendmail Reference

This appendix provides reference material on sendmail. It is divided into the following
sections:

• “sendmail Command-Line Flags” on page 221

• “Tuning” on page 224

• “The Configuration File” on page 229

• “Flags, Options, and Files” on page 247

sendmail Command-Line Flags

You can include one or more flags on the command line to tailor a sendmail session. This
section describes some of the more frequently used flags. For a complete description of
command-line flags, see “Flags, Options, and Files” on page 247.

Changing the Values of Configuration Options

The -o flag overrides an option in the configuration file. The override is for the current
session only. In the following example, the T (timeout) option becomes two minutes for
this session only:

/usr/lib/sendmail -oT2m

For a complete discussion of configuration options, see “Flags, Options, and Files” on
page 247.

222

Appendix B: IRIX sendmail Reference

Delivery Mode

One configuration option frequently overridden on the command line is the d option,
which specifies the sendmail delivery mode. The delivery mode determines how quickly
mail is delivered:

i deliver interactively (synchronously)

b deliver in background (asynchronously)

q queue only (don’t deliver)

There are trade-offs. Mode i passes the maximum amount of information to the sender,
but is rarely necessary.

Mode q puts the minimum load on your system, but if you use it, delivery may be
delayed for up to the queue interval.

Mode b is probably a good compromise. However, in this mode, sendmail may initiate a
large number of processes if you have a mailer that takes a long time to deliver a
message.

Queue Mode

The -q flag causes sendmail to process the mail queue at regular intervals. The syntax is
as follows, where time defines the interval between instances of queue processing:

-q [time]

Time is expressed in number of minutes: 15m sets the interval to 15 minutes. If time is
omitted, sendmail processes the queue once and returns. The -q flag is often used in
conjunction with daemon mode, described in the next subsection.

See “Timeouts and Intervals” on page 225 for a discussion of time-interval specifications
and formats.

Daemon Mode

To process incoming mail over sockets, a daemon must be running. The -bd flag causes
sendmail to run in daemon mode. The -bd and -q flags can be combined in one call, as in
the following example:

sendmail Command-Line Flags

223

/usr/lib/sendmail -bd -q30m

This command causes sendmail to run in daemon mode and to fork a subdaemon for
queue processing every half hour.

The script for starting sendmail that is provided with IRIX includes the following
command line:

/usr/lib/sendmail -bd -q15m

Verify Mode

Using the -bv flag directs sendmail to validate addresses, aliases, and mailing lists. In this
mode, sendmail performs verification only. It does not try to collect or deliver a message.
sendmail expands all aliases, suppresses duplicates, and displays the expanded list of
names. For each name, sendmail indicates if it knows how to deliver a message to that
destination.

Test Mode

The -bt flag places sendmail in test mode so that it describes how the current configuration
rewrites addresses. Test mode is extremely useful for debugging modifications to the
/usr/lib/sendmail.cf configuration file. For more information, see “Test Mode” on page 242.

Debugging Flags

Several debugging flags are built into sendmail. Each flag includes a number and a level.
The number identifies the debugging flag. The level, which defaults to 1, dictates how
much information prints. A low level causes minimal information to print; a high level
causes more comprehensive information to print. In general, levels greater than 9 cause
so much information to print that it is of limited value. Debugging flags use the following
syntax:

-d debug-list

A debug list includes the flag number and the flag level, as shown in the following
examples.

• Set flag 13 to level 1.

224

Appendix B: IRIX sendmail Reference

-d13

• Set flag 13 to level 3.

-d13.3

• Set flags 5 though 18 to level 1.

-d5-18

• Set flags 5 through 18 to level 4.

-d5-18.4

Many debugging flags are of little use to the average sendmail user. Some are occasionally
useful for helping to track down obscure problems. “Flags, Options, and Files” on page
247 includes a complete list of debugging flags.

Using a Different Configuration File

The -C flag directs sendmail to use an alternate configuration file. For example, the
following line directs sendmail to use the test.cf file instead of the default
/usr/lib/sendmail.cf file:

/usr/lib/sendmail -Ctest.cf

If the -C flag appears without a filename, sendmail uses the file sendmail.cf in the current
directory. Thus, the -C flag directs sendmail to ignore any /usr/lib/sendmail.fc (“frozen”) file
that may be present.

Tuning

A number of configuration parameters are available for fine-tuning sendmail to the
requirements of a specific site. Options in the configuration file set these parameters. For
example, the string “T3d” sets the T (timeout) option to “3d” (three days).

Most options have default values that are appropriate for many sites. However, sites
having very high mail loads may need to tune these parameters to fit the mail load. In
particular, sites with a large volume of small messages that are delivered to multiple
recipients may need to adjust the parameters for queue priorities.

Tuning

225

The rest of this section describes the configuration parameters for the following tuning
areas:

• timeouts and intervals

• forking during queue runs

• queue priorities

• load limiting

• delivery mode

• log level

Timeouts and Intervals

Time intervals use the following abbreviations:

s seconds

m minutes

h hours

d days

w weeks

For example, “10m” represents 10 minutes, and “2h30m” represents two hours and 30
minutes.

Queue Interval

The argument to the -q flag specifies how often to process the mail queue. When the
sendmail daemon is started with the /etc/init.d/mail script, the queue interval is set to 15
minutes.

If sendmail runs in delivery mode b, messages are written to the queue only when they
cannot be delivered (for example, when a recipient host is down). Therefore, the need to
process the queue is limited and the queue interval value may be set quite high. The
value is relevant only when a host that was down comes back up.

If sendmail runs in delivery mode q, the queue interval should be set to a low value, as it
defines the longest time that a message sits in the local queue before being processed.

226

Appendix B: IRIX sendmail Reference

Read Timeouts

sendmail can time out when reading the standard input or when reading from a remote
SMTP server. Technically, a timeout is not acceptable within the published protocols.
However, setting the read timeout option to a high value (such as an hour) reduces the
chance that a large number of idle daemons will pile up on a system. The read timeout
option is r.

Message Timeouts

sendmail causes a queued message to time out after a specified time period. This feature
ensures that the sender knows the message cannot be delivered. This default message
timeout value is one week (seven days). The value is set with the T option.

The queue records the time of submission, rather than the time remaining until timeout.
This approach enables sendmail to flush messages that have been hanging for a short
period by running the queue with a short message timeout. The following example
illustrates how to process the queue and flush any message that is one day old:

/usr/lib/sendmail -oT1d -q

Forking During Queue Runs

Setting the Y option causes sendmail to fork before each individual message when
processing the queue. This technique prevents sendmail from consuming large amounts
of memory, and may be useful in memory-poor environments. However, if the Y option
is not set, sendmail keeps track of hosts that are down during a queue run, which can
improve performance dramatically.

Queue Priorities

sendmail assigns a priority to every message when it is first instantiated. sendmail uses the
priority and the message creation time (in seconds since January 1, 1970) to order the
queue. The message with the lowest priority number is processed first. The algorithm
that derives a message’s priority uses the following information:

message size (in bytes)
Small messages receive lower priorities than large messages, increasing
the efficiency of the queue.

Tuning

227

message class
If the user includes a “Precedence:” field and value in a message,
sendmail uses the value to select the message class from the configuration
file. (Typical values might be “first-class” or “bulk.”)

class work factor
This factor is set in the configuration file with the z option; its default
value is 1800.

number of recipients
The number of recipients affects the load a message presents to the
system. A message with a single recipient has a lower priority than one
with a long recipient list.

recipient work factor
This factor is set in the configuration file with the y option; its default
value is 1000.

The priority algorithm is as follows:

priority=message_size-(message_class * z)+(num_recipients * y)

After assigning message priorities, sendmail orders the queue by using the following
formula:

ordering = priority + creation_time

A message’s priority can change each time an attempt is made to deliver it. The “work
time factor” (set with the Z option) is a value that increments the priority, on the
assumption that a message that has failed many times will tend to fail in the future.

Load Limiting

sendmail can queue (and not attempt to deliver) mail if the system load average exceeds
a specified maximum. The x option defines this maximum limit. When the load average
exceeds the maximum, sendmail tests each message’s priority by using the following
algorithm, where q is the value associated with the q option, and x is the value associated
with the x option:

q / (load_average - x + 1)

228

Appendix B: IRIX sendmail Reference

In IRIX sendmail, the algorithm is modified slightly. The number of child processes forked
by the sendmail daemon is added to the load average. Thus, a host with a load average of
1 but with 6 forked sendmail processes has an effective load average of 7.

After the final load average is calculated, sendmail compares it to the message priority for
each message. If the priority is greater, sendmail sets the delivery mode to q (queue only).

The default value for the q option is 10000; each point of load average is worth 10000
priority points. The X option defines the load average at which sendmail refuses to accept
network connections. Locally generated mail (including incoming UUCP mail) is still
accepted.

Log Level

sendmail provides a comprehensive error- and event-logging capability. The L (log level)
option in the configuration file determines the level of detail written to the log. The
default value for the log level is 1; valid levels are as follows:

0 no logging

1 major problems only

2 message collections and failed deliveries

3 successful deliveries

4 messages being deferred (because a host is down, for example)

5 normal message queue-ups

6 unusual but benign incidents, such as trying to process a locked queue
file

9 log internal queue ID to external message ID mappings; useful for
tracing a message as it travels among several hosts

12 several messages of interest when debugging

16 verbose information regarding the queue

The Configuration File

229

The Configuration File

This section begins with an overview of the configuration file, describes its semantics in
detail, and includes hints on writing a customized version. Admittedly, the file’s syntax
is not easy to read or write. A more important design criterion is that the syntax be easy
to parse, because it must be parsed each time sendmail starts up.

The Syntax

The configuration file is a series of lines, each of which begins with a character that
defines the semantics for the rest of the line. A line beginning with a space or a tab is a
continuation line (although the semantics are not well defined in many places). A blank
line or a line beginning with the number symbol (#) is a comment.

Rewriting Rules—The S and R Commands

The rewriting rules are the core of address parsing. These rules form an ordered
production system. During parsing, sendmail scans the set of rewriting rules, looking for
a match on the left-hand side (ls) of the rule. When a rule matches, the address is replaced
by the right-hand side (rhs) of the rule.

The rewriting rules are grouped into sets of one or more rules. Each set has an integer
identifier called a rule set number. Each rule set acts like a subroutine: When the set is
called, each rule is scanned in sequence until all rules have been scanned or until the rule
set returns to the caller.

Some rule sets are used internally and have specific semantics. Others do not have
specifically assigned semantics and can be referenced by mailer definitions or by other
rule sets.

Each rule set begins with an S command, with the syntax

Sn

where n is the rule set identifier, an integer between 0 and 99. If the same rule set
identifier is used more than once in a configuration file, the last definition is the one used.

Each line within the rule set begins with an R command and defines a rewrite rule. R
commands have the syntax

Rlhs rhs [comments]

230

Appendix B: IRIX sendmail Reference

where the following conditions exist:

• The fields are separated by at least one tab character; embedded spaces with a field
are acceptable.

• Any input matching the lhs pattern is rewritten according to the rhs pattern.

• Comments, if any, are ignored.

Define Macro—The D Command

The D command names a macro and defines its content. A macro name is a single ASCII
character. sendmail defines several internal macros of its own. To avoid conflicts, use
uppercase letters for all user-defined macros. Lowercase letters and special characters are
reserved for system use. (A list of sendmail’s internally defined macros appears under the
topic “Special Macros and Conditionals” on page 235.)

The Define Macro command takes one of the following forms:

DxValue

Dx|shell_command [arguments]

where x is the name of the macro. The first form defines the macro to contain Value. The
second form defines the macro as the first line seen on stdout of the specified shell
command. The vertical bar must immediately follow the macro identifier; no white space
is permitted. The remainder of the line is interpreted as arguments to the shell command.

Macros can be interpolated in most places by means of the escape sequence $x.

Caution: sendmail does not honor comments on macro definition lines. For example, the
following line defines the D macro as “foo.com # my domain name”:

DDfoo.com # my domain name

Define Classes—The C and F Commands

The C command defines classes of words to match on the left-hand side of rewriting
rules, where a “word” is a sequence of characters. A class name is a single uppercase
letter. A class might define a site’s local names and be used to eliminate attempts to send
to oneself. Classes can be defined either directly in the configuration file or by being read
in from a pipe or other file. The sequence cannot contain characters used as “operators”
in addresses. (Operators are defined with the $o macro.)

The Configuration File

231

The C command takes one of the following forms:

CX word1 [word2 ...]

CX $x [$y ...]

where X is the class name. The first form defines the class to match any of the named
words. The second form reads the elements of the class from the expansion of the listed
macros. The macros to be expanded must be leftmost in each token. Only one macro can
be expanded per token. Any remainder in a token following a macro expansion is added
as a separate token.

The F command defines a file from which to read the elements of a class, and takes either
of the following forms:

FX file [format]

FX|shell_command [arguments]

The first form reads the elements of the class from the named file. If an optional format
argument is present, it is passed as the control string to an sscanf() call and applied to
each input line read from the named file, thus:

sscanf(const char *line, const char *format, char *new-element);

There must be no white space to the left of the filename.

The second form reads the elements of the class from stdout of the specified shell
command. The entire contents of the line are taken to be a shell command followed by its
arguments.

It is permissible to split class definitions across multiple lines. For example, these two
forms are equivalent:

CHmonet picasso

and

CHmonet
CHpicasso

It is also permissible to define a class using both C and F commands. For example, the
following commands define class H containing monet, picasso, the expansion of the $w
macro, and all strings from the file /var/tmp/foofile appearing before the first number
symbol (#) on each line:

232

Appendix B: IRIX sendmail Reference

CHmonet picasso $w
FH/var/tmp/foofile %[^#]

Caution: sendmail does not honor comments that are not respected on class definition
lines. For example, the following command defines the D class as containing “foo.com,”
“bar.com,” “#,” “my,” “local,” and “domains”:

CD foo.com bar.com # my local domains

Define Mailer—The M Command

The M command defines programs and interfaces to mailers. The format is as follows:

Mname, {field=value}*

where name is the name of the mailer (used internally only) and the field=value pairs
define attributes of the mailer. The asterisk (*) indicates that the preceding bracketed
structure may be repeated 0 or more times. That is, there may be multiple field=value
pairs. The following list defines valid field names:

Path The pathname of the mailer.

Flags Special flags for this mailer; see “Flags, Options, and Files” on page 247
for a list of special flags.

Sender A rewriting set for sender addresses.

Recipient A rewriting set for recipient addresses.

Argv An argument vector to pass to this mailer.

Eol The end-of-line string for this mailer.

Maxsize The maximum message length to this mailer.

Only the first character of the field name is checked.

Define Header–The H Command

The H command defines the format of header lines that sendmail inserts into a message.
The command format is as follows:

H[?mflags?]hname: htemplate

Continuation lines for an H command line appear in the outgoing message. sendmail
macro-expands the htemplate before inserting it into the message. If mflags (which must

The Configuration File

233

be surrounded by question marks) appear in the command line, at least one of the
specified flags must also appear in the mailer definition or the header will not appear in
the message. However, if a header appears in the input message, the header also appears
in the output, regardless of these flags.

Some headers have special semantics, which are described in “The Semantics” on page
234.

Set Option—The O Command

Several sendmail options can be set by a command line in the configuration file. Each
option is identified by a single character.

The format of the O command line is as follows:

Oo value

The command sets option o to value. Depending on the option, value is a string; an
integer; a Boolean (with legal values “t,” “T,” “f,” or “F” and a default of TRUE); or a time
interval.

The K command is a new command available in IRIX sendmail. This command defines
(K)eyed databases that are accessible by means of the lookup operators. See “Define
Keyed Files—The K Command” on page 234 for a complete description of the K
command.

Define Trusted Users—The T Command

Trusted users are permitted to override the sender address by using the -f flag. Typically,
trusted users are limited to root, uucp, and network. On some systems it may be
convenient to include other users. For example, there may be a separate uucp login for
each host. Note, though, that the concept of trusted users in sendmail bears no relation to
Trusted IRIX/B, or to the concept of trusted (secure) operating systems in general.

The format of the T command is as follows:

Tuser1 user2...

A configuration file can contain multiple T lines.

234

Appendix B: IRIX sendmail Reference

Define Precedence—The P Command

The P command defines values for the Precedence field. The format of the command line
is as follows:

Pname=num

When sendmail matches the value in a message’s Precedence field with the name in a P
command line, sendmail sets the message’s class to num. A higher number indicates a
higher precedence. Negative numbers indicate that error messages will not be returned
to the sender. The default precedence is zero. For example, a list of precedences might be

Pfirst-class=0

Pspecial-delivery=100

Pjunk=-100

Define Keyed Files—The K Command

The K command defines a symbolic name for accessing a database. The format of the
command line is as follows:

Kname type file

The name value is the name used to specify the database in a lookup command. The type
defines the type of database file, which can be one of the following:

dbm Support for the ndbm(3) library.

nis Support for NIS (YP) maps. NIS+ is not supported in this version.

host Support for DNS lookups.

dequote A “pseudo-map” (that is, one that does not have any external data) that
allows a configuration file to break apart a quoted string in the address.
This is primarily useful for DECnet addresses, which often have quoted
addresses that need to be unwrapped on gateways.

The file value specifies the filename of the database to be searched.

The Semantics

This section describes the semantics of the configuration file, including special macros,
conditionals, special classes, and the “error” mailer.

The Configuration File

235

Special Macros and Conditionals

Macros are interpolated by means of the construct $x, where x is the name of the macro
to be interpolated. Special macros are named with lowercase letters; they either have
special semantics or pass information into or out of sendmail. Some special characters are
also reserved, and are used to provide conditionals and other functions.

The following syntax specifies a conditional:

$?x text1 $| text2 $.

This example interpolates text1 if the macro $x is set, and text2 otherwise.

The “else” ($|) clause can be omitted.

The following macros must be defined if information is to be transmitted into sendmail:

e SMTP entry message, which prints out when STMP starts up

j “official” domain name for this site; must be the first word of the $e
macro

l format of the UNIX “From” line; usually a constant

n name of the daemon (for error messages); usually a constant

o set of token operators in addresses

q default format of sender address

The $o macro consists of a list of characters that are treated as tokens themselves and
serve to separate tokens during parsing. For example, if @ were in the $o macro, then the
input string “a@b” would scan as three tokens: a, @, and b.

Here are several examples of these macro definitions:

De$j Sendmail $v/$Z ready at $b

Dj$w

DlFrom $g $d

DnMAILER-DAEMON

Do.:%@!^=/[]

Dqg?x ($x)$.

236

Appendix B: IRIX sendmail Reference

An acceptable alternative format for the $q macro is "$?x$x $.<$g>" . This syntax
corresponds to the following two formats:

jd@company.com (John Doe)

John Doe <jd@company.com>

Some macros are defined by sendmail for interpolation into arguments passed to mailers
or for other contexts. These macros are:

a origination date in RFC 822 format

b current date in RFC 822 format

c hop count

d date in UNIX (ctime) format

f sender (“From”) address

g sender address relative to the recipient

h recipient host

i queue ID

p PID for sendmail

r protocol used

s sender’s hostname

t a numeric representation of the current time

u recipient user

v version number of sendmail

w hostname of this site

x full name of the sender

z home directory of the recipient

Macros $a, $b, and $d specify three dates that can be used. The $a and $b macros are in
RFC 822 format. $a is the time extracted from the “Date:” line of the message; $b is the
current date and time (used for postmarks). If no “Date:” line appears in the incoming
message, $a is also set to the current time. The $d macro is equivalent to the $a macro in
UNIX format (as described on the ctime(3C) reference page).

The Configuration File

237

The $c macro is set to the “hop count,” the number of times this message has been
processed. It can be determined by the -h flag on the command line or by counting the
time stamps in the message.

The $f macro is the ID of the sender as originally determined; when a message is sent to
a specific host, the $g macro is set to the address of the sender relative to the recipient. For
example, if jd sends to buddy@USomewhere.edu from the machine company.com, the $f
macro will be jd and the $g macro will be jd@company.com.

When a message is sent, the $h, $u, and $z macros are set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $@ and $: part of the
rewriting rules, respectively. The $i macro is set to the queue ID on this host; when
included in the time-stamp line, it can be extremely useful for tracking messages.

The $p and $t macros are used to create unique strings (for example, for the Message-Id
field). The $r and $s macros are set to the protocol used to communicate with sendmail
and the name of the sending host; these macros are not supported in the current version.

The $v macro is set to be the version number of sendmail, which normally appears in time
stamps and is extremely useful for debugging. The $w macro is set to the name of this
host, if it can be determined.

The $x macro is set to the full name of the sender, derived from one of these sources (in
this order):

• a flag to sendmail

• the value of the “Full-name:” line in the header if it exists

• the comment field of a “From:” line

• for messages originating locally, the value from the /etc/passwd file

Special Classes

The w class is the set of all names this host is known by, and can be used to match local
hostnames.

The Left-Hand Side

The left-hand side of a rewriting rule contains a pattern. Words are simply matched
directly. A dollar sign introduces the following meta-syntax:

238

Appendix B: IRIX sendmail Reference

$* Match zero or more tokens.

$+ Match one or more tokens.

$- Match exactly one token.

$=x Match any token in class x.

$~x Match any token not in class x.

If a match occurs, it is assigned to the symbol $n for replacement on the right-hand side,
where n is the index in the lhs. For example, if the lhs

$-@$+

is applied to the input

jd@company.com

the rule will match, and the values passed to the rhs will be

$1 jd

$2 company.com

The Right-Hand Side

When the left-hand side of a rewriting rule matches, the input is deleted and replaced by
the right-hand side. Right-hand-side tokens are inserted exactly as they appear unless
they begin with a dollar sign. The meta-syntax is:

$n Substitute indefinite token n from lhs; substitute the corresponding
value from a $+, $-, $*, $=, or $~ match on the lhs; can be used anywhere.

$[hostname$] Canonicalize hostname; a hostname enclosed between $[and $] is looked
up by the gethostbyname() routines and replaced by the canonical
name. For example, $[frodo$] might become frodo.fantasy.com and
$[[192.48.153.1]$] would become sgi.com. If gethostbyname() encounters
an error, hostname will be returned unchanged.

$[name$:default$]
This is an extended version of the preceding construct, and provides a
way to determine whether the canonicalization was successful. Using
this syntax, the default is returned if the canonicalization step fails. For
example, $[frodo$:FAIL$] becomes FAIL if gethostbyname() fails to
canonicalize frodo.

The Configuration File

239

$(x key$@arg$:default$)
Look up key in DBM or NIS database x. This is the database lookup
syntax; x corresponds to a database previously declared using the K
command (described in “Define Keyed Files—The K Command” on
page 234) and key is the string that should be searched for in the
database. The arg and default arguments are optional. The default is
returned if the key was not found in the database. If neither the default
nor a matching key is found, the whole expression expands to the value
of key. However, if a result is found, it is used as the format string of a
sprintf() expression, with the arg as extra argument. Thus, database
values with “%s” strings embedded in them can be useful when
rewriting expressions. These values could typically be used with the
pathalias program to expand routes without leaving sendmail.

${x query$:default$}
Look up query in DNS database x. This is the DNS database lookup
syntax. The various values of x are internally defined and correspond to
various DNS databases. The default argument is optional and will be
returned if query cannot be found in the specified database.

The values for x are listed below.

When domain search rules are requested, sendmail sets the
RES_DNSRCH flag when calling the resolver. See the resolver(4)
reference page for further information.

$>n Call rule set n; causes the remainder of the line to be substituted as usual
and then passed as the argument to rule set n. The final value of rule set
n becomes the substitution for this construct.

 @ Return MX record for query.

 . As above, but use domain search rules.

 : Return MR record for query.

 ? Return MB record for query.

 c Expand query to its canonical name following MX records.

 C As above, but use domain search rules.

 h Like ${c but for A records.

 H As above, but use domain search rules.

240

Appendix B: IRIX sendmail Reference

Multiple calls can be embedded on the rhs. For example, >32>33$1
would make the substitution for $1 and pass the result to rule set 33.
The result from rule set 33 would then be passed as the input to rule set
32. Finally, the entire construct would be replaced with the result from
rule set 32.

Only embedded rule set calls in the form outlined above are supported.
Rule sets calls cannot be arbitrarily placed within the rhs.

$#mailer$@host$:user
Resolve to mailer; the $# syntax should be used only in rule set 0. The
syntax causes evaluation of the rule set to terminate immediately and
signals sendmail that the address has completely resolved. This process
specifies the {mailer, host, user} triple necessary to direct the mailer. If the
mailer is local, the host part may be omitted. The mailer and host must
be a single word, but the user may be a multi-part value.

An entire rhs may also be prefixed by a $@ or a $: to control evaluation.

The $@ prefix causes the rule set to return with the remainder of the rhs as the value. The
$: prefix causes the rule to terminate immediately, but the rule set to continue; this can be
used to avoid continued application of a rule. The prefix is stripped before continuing.

The $@ and $: prefixes may precede a $> specification. For example,

R$+ $:$>7$1

matches anything, passes that to rule set 7, and continues; the $: is necessary to avoid an
infinite loop.

Substitution occurs in the order described: Parameters from the lhs are substituted, host
names are canonicalized, “subroutines” are called, and finally $#, $@, and $: are
processed.

Semantics of Rewriting Rule Sets

There are five rewriting rule sets that have specific semantics. Figure B-1 shows the
relationship among these rule sets.

The Configuration File

241

Figure B-1 Semantics of Rewriting Rule Sets

Rule set 3 should turn the address into canonical form. This form should have the
following basic syntax:

local-part@host-domain-spec

If no “at” (@) sign is specified, then the host-domain-spec can be appended from the
sender address (if the C flag is set in the mailer definition corresponding to the sending
mailer). sendmail applies rule set 3 before doing anything with any address.

Next, rule set 0 is applied to an address that actually specifies recipients. The address
must resolve to a {mailer, host, user} triple. The mailer must be defined in the mailer
definitions from the configuration file. The host is defined into the $h macro for use in
the argv expansion of the specified mailer.

Rule sets 1 and 2 are applied to all sender and recipient addresses, respectively. They are
applied before any specification in the mailer definition. They must never resolve.

Rule set 4 is applied to all addresses in the message. It is typically used to translate from
internal to external form.

The “error” Mailer

The mailer with the special name “error” can be used to generate a user error. The
(optional) host field is a numeric exit status to be returned, and the user field is a message
to be printed. For example, the following entry on the rhs of a rule causes the specified
error to be generated if the lhs match:

addr 3 D 4 msg

resolved address0

R2

S1

242

Appendix B: IRIX sendmail Reference

$#error$:Host unknown in this domain

This mailer is functional only in rule set 0.

Relevant Issues

This section discusses testing and debugging the rewrite rules and building mailer
definitions.

Testing and Debugging the Rewrite Rules

As part of building or modifying a configuration file, you should test the new file.
sendmail provides a number of built-in tools to assist in this task. The subsections that
follow discuss tools and techniques for debugging the rewrite rules.

Using Alternative Configuration Files

Using the -C command-line flag causes sendmail to read an alternate configuration file.
This feature is helpful during debugging because it permits modifications and testing on
a separate copy of the configuration file from the one currently in use. This precaution
eliminates the chance that a buggy configuration file will be used by an instance of
sendmail that is trying to deliver real mail. This flag also provides a convenient way to test
any number of configuration files without fussy and potentially confusing renames. See
“Using a Different Configuration File” on page 224 and “Command-Line Flags” on page
247 for more information.

Test Mode

Invoking sendmail with the -bt flag causes it to run in “test mode.” For example, the
following command invokes sendmail in test mode and causes it to read configuration file
test.cf:

/usr/lib/sendmail -bt -Ctest.cf

In this mode, sendmail processes lines of the form

rwsets address

The Configuration File

243

where rwsets is the list of rewriting sets to use and address is an address to which you
apply the sets. In test mode, sendmail shows the steps it takes as it proceeds, finally
showing the final address.

A comma-separated list of rule sets causes sequential application of rules to an input. For
example, the following command first applies rule set 3 to the value monet@giverny. Rule
set 1 is applied to the output of rule set 3, followed similarly by rule sets 21 and 4:

3,1,21,4 monet@giverny

Note: Some versions of sendmail, including those provided with all versions of IRIX prior
to IRIX 4.0, automatically apply rule set 3 to input before applying the requested rule set
sequence. Versions of sendmail in IRIX 4.0 and later do not apply rule set 3; rule set 3 must
be specifically requested.

The input and output of each rule set is displayed. For example, input of

3,0 foo@bar

might result in output that looks like this:

rewrite: ruleset 3 input: foo @ bar
rewrite: ruleset 3 returns: foo < @ bar >
rewrite: ruleset 0 input: foo < @ bar >
rewrite: ruleset 30 input: foo < @ bar . com >
rewrite: ruleset 30 returns: foo < @ bar . com >
rewrite: ruleset 0 returns:
$# forgn $@ bar . com $: foo < @ bar . com >

This output indicates that, given the address foo@bar, rule set 0 will select the forgn

mailer and direct it to connect to host bar.com, which will be told to send the mail on to
foo@bar.com. Furthermore, rule set 0 “called” rule set 30 at one point while processing
the address.

The -d21 Debugging Flag

The -d21 debugging flag causes sendmail to display detailed information about the
rewrite process. This flag is most useful when used with the test mode described in the
preceding subsection. The most useful setting of this flag is -d21.12, which shows all
rewrite steps. Higher levels of the -d21 flag are rarely needed and create enormous
amounts of output.

244

Appendix B: IRIX sendmail Reference

The Debugging Rewrite Rule

The standard /usr/lib/sendmail.cf file supplied with IRIX includes a special “debugging”
rewrite rule. This rule is defined as follows:

insert this handy debugging line wherever you have problems
#R$* $:$>99$1

Note that rule set 99 is an empty rule set that does nothing. Placing one or more
(uncommented) copies of this rule anywhere within a rule set forces sendmail to display
an intermediate rewrite result without using the -d21 flag. The following test mode
output illustrates the use of the debugging rewrite rule:

rewrite: ruleset 3 input: foo @ bar
rewrite: ruleset 3 returns: foo < @ bar >
rewrite: ruleset 0 input: foo < @ bar >
rewrite: ruleset 99 input: foo < @ bar . com >
rewrite: ruleset 99 returns: foo < @ bar . com >
rewrite: ruleset 99 input: foo < @ barcom >
rewrite: ruleset 99 returns: foo < @ barcom >
rewrite: ruleset 0 returns:
$# ether $@ barcom $: foo < @ barcom >

Note that somewhere between the first and second appearance of the debugging rewrite
rule in rule set 0, the host name was mangled from bar.com to barcom.

Building Mailer Definitions

To add an outgoing mailer to a mail system, you must define the characteristics of the
mailer. Each mailer must have an internal name. This name can be arbitrary, except that
the names “local” and “prog” must be defined.

The pathname of the mailer must be given in the P field. If this mailer is accessed by
means of an IPC connection (socket), use the string “[IPC]” instead.

The F field defines the mailer flags. Specify an f or r flag to pass the name of the sender
as an -f or -r flag respectively. These flags are passed only if they were passed to sendmail,
so that mailers that give errors under some circumstances can be placated. If the mailer
is not picky, just specify “-f $g” in the argv template. If the mailer must be called as root,
use the S flag; this flag will not reset the user ID before calling the mailer. (sendmail must
be running setuid to root for this technique to work.)

The Configuration File

245

If this mailer is local (that is, it will perform final delivery rather than another network
hop), use the l flag. Quote characters (backslashes and quotation marks) can be stripped
from addresses if the s flag is specified; if it is not, they are passed through. If the mailer
is capable of sending to more than one user on the same host in a single transaction, use
the m flag. If this flag is on, the argv template containing $u will be repeated for each
unique user on a given host. The e flag marks the mailer as being expensive, causing
sendmail to defer connection until a queue run. (For this technique to be effective, you
must use the c configuration option.)

An unusual case is the C flag: it applies to the mailer the message is received from, rather
than the mailer being sent to. If this flag is set, the domain specification of the sender (that
is, the @host.domain part) is saved and is appended to any addresses in the message that
do not already contain a domain specification. For example, if the C flag is defined in the
mailer corresponding to jd@company.com, a message of the form

From: jd@company.com
To: buddy@USomewhere.edu, jane

will be modified to

From: jd@company.com
To: buddy@USomewhere.edu, jane@company.com

Other flags are described in “Mailer Flags” on page 251.

The S and R fields in the mailer description are per-mailer rewriting sets to be applied to
sender and recipient addresses, respectively. These sets are applied after the sending
domain is appended and the general rewriting sets (1 and 2) are applied, but before the
output rewrite (rule set 4) is applied. A typical usage is to append the current domain to
addresses that do not already have a domain.

For example, depending on the domain it is being shipped into, a header of the form
“From: jd” might be changed to “From: jd@company.com” or “From: company!jd.”

These sets can also be used to do special-purpose output rewriting with rule set 4.

The E field defines the string to use as an end-of-line indication. A string containing only
a newline is the default. The usual backslash escapes (\r, \n, \f, \b) can be used.

Finally, an argv template is given as the E field. It can have embedded spaces. If there is
no argv with a $u macro in it, sendmail will speak SMTP to the mailer. If the pathname
for this mailer is “[IPC],” the argv should be

246

Appendix B: IRIX sendmail Reference

IPC $h [port]

where port is the port number to connect to. This number is optional.

For example, the following specification specifies a mailer to do local delivery and a
mailer for Ethernet delivery:

Mlocal, P=/bin/mail, F=EDFMlsmhu, S=10, R=20, A=mail -s -d $u

Mether, P=[IPC], F=mDFMhuXC, S=11, R=21, M=1000000, E=\r\n, \

A=IPC $h

The first mailer is called “local” and is located in the file /bin/mail. It has the following
characteristics:

• It escapes lines beginning with “From” in the message with a “>” sign.

• It expects “Date:”, “From:”, and “Message-Id:” header lines.

• It does local delivery.

• It strips quotation marks from addresses.

• It sends to multiple users at once.

• It expects uppercase to be preserved in both host and user names.

Rule set 10 is to be applied to sender addresses in the message and rule set 20 is to be
applied to recipient addresses. The argv to send to a message is the word mail, the word
-s, the word -d, and words containing the name of the receiving user.

The second mailer is called “ether” and is connected with an IPC connection. It has the
following characteristics:

• It handles multiple users at the same time.

• It expects “Date:”, “From:”, and “Message-Id:” header lines.

• It expects uppercase to be preserved in both host and user names.

• It uses the hidden-dot algorithm of RFC 821.

• It rewrites addresses so that any domain from the sender address is appended to
any receiver name without a domain.

Sender addresses are processed by rule set 11; recipient addresses, by rule set 21. There
is a 1,000,000-byte limit on messages passed through this mailer. The EOL string for this
mailer is "\r\n" and the argument passed to the mailer is the name of the recipient host.

Flags, Options, and Files

247

Flags, Options, and Files

This section contains information on the following topics:

• command-line flags

• configuration options

• mailer flags

• summary of support files

• debugging flags

Command-Line Flags

Flags must precede addresses. The flags are:

-bx Set operation mode to x. Operation modes are:

-Cfile Use a different configuration file. sendmail runs as the invoking user
(rather than root) when this flag is specified.

a Run in ARPANET mode.

The special processing for the ARPANET includes reading the
“From:” and “Sender:” lines from the header to find the
sender, printing ARPANET-style messages (preceded by
three-digit reply codes for compatibility with the FTP
protocol) and ending lines of error messages with <CRLF>.

d Run as a daemon.

i Initialize the alias database.

m Deliver mail in the usual way (default).

p Print the mail queue.

s Speak SMTP on input side.

t Run in test mode.

v Just verify addresses, don’t collect or deliver.

z Freeze the configuration file.

248

Appendix B: IRIX sendmail Reference

-dflag[-flag][.level]
Set debugging flag (or range of flags) to the specified level. (The default
is 1.) See “Debugging Flags” on page 254.

-Fname Set the full name of the sender to name.

-fname Set the name of the “From” person (the sender of the mail). This flag is
ignored unless the user appears in the list of “trusted” users, or name is
the same as the user’s name.

-hcnt Set the “hop count” to cnt. The hop count is incremented every time the
mail is processed. When it reaches a limit, the mail is returned with an
error message, the victim of an aliasing loop.

-n Don’t do aliasing.

-ox value Set configuration option x to the specified value. These options are
described in section “Configuration Options” on page 248.

-q[time] Process the queued mail. If the time is given, sendmail will run through
the queue at the specified interval to deliver queued mail; otherwise, it
runs only once. See “Queue Mode” on page 222.

-r name An alternative and obsolete form of -f.

-t Read the header for “To:”, “Cc:”, and “Bcc:” lines, and send the message
to everyone listed in those lists. The “Bcc:” line is deleted before
sending. Any addresses in the argument vector are deleted from the
send list.

-v Go into verbose mode: Alias expansions are announced, and so on.

Configuration Options

You can set the following options by using the -o flag on the command line or the O line
in the configuration file. Many of these options cannot be specified unless the invoking
user is trusted.

Afile Use the named file as the alias file. If no file is specified, use alias in the
current directory.

aN If set, wait up to N minutes for an “@:@” entry to exist in the alias
database before starting up. If the entry does not appear in N minutes,
rebuild the database (if the D option is also set) or issue a warning.

Flags, Options, and Files

249

Bc Set the blank substitution character to c. Unquoted spaces in addresses
are replaced by this character.

c If an outgoing mailer is marked as being expensive, don’t connect
immediately. This option requires queueing.

dx Deliver in mode x. Legal modes are:

ex Handle errors by using mode x. The values for x are:

Fmode Set the UNIX file mode to use when creating queue files and “frozen
configuration” files.

f Save UNIX style “From” lines at the front of headers. Normally these
lines are assumed to be redundant and are discarded.

gn Set the default group ID for running mailers to n.

Hfile Specify the help file for SMTP.

I Insist that the BIND name server be running to resolve hostnames and
MX records. Treat ECONNREFUSED errors from the resolver as
temporary failures. In general, you should set this option only if you are
running the name server. Set this option if the /etc/hosts file does not
include all known hosts or if you are using the MX (mail forwarding)
feature of the BIND name server. The name server is still consulted even
if this option is not set, but sendmail resorts to reading /etc/hosts if the
name server is not available.

i Do not interpret dots on a line by themselves as a message terminator.

i Deliver interactively (synchronously).

b Deliver in background (asynchronously).

q Just queue the message (deliver during queue run).

D Rebuild the alias database if necessary and possible. If this
option is not set, sendmail will not rebuild the alias database
until you explicitly request it to do so (by using sendmail -bi).

p Print error messages (default).

q Print no messages; just give exit status.

m Mail back errors.

w Write back errors (mail the errors if user not logged in).

e Mail back errors and always give zero exit status.

250

Appendix B: IRIX sendmail Reference

Ktimeout Define the maximum amount of time a cached connection is permitted
to idle without activity. The timeout is given as a tagged number, with “s”
for seconds, “m” minutes, “h” hours, “d” days, and “w” weeks. For
example, “K1h30m” and “K90m” both set the timeout to one hour thirty
minutes.

Ln Set the log level to n.

Mx value Set the macro x to value. This option can be used only from the command
line.

m Send to “me” (the sender) even if the sender is in an alias expansion.

Nnetname Set the name of the home (local) network. If the name of a connecting
host (determined by a call to gethostbyaddr()) is unqualified (contains
no dots), a single dot and netname will be appended to sendmail’s idea of
the name of the connecting host.

Later, the argument of the SMTP “HELO” command from the
connecting host will be checked against the name of the connecting
host as determined above. If they do not match, “Received:” lines are
augmented by the connecting hostname that sendmail has generated so
that messages can be traced accurately.

n Validate the right-hand side when building the alias database.

o Assume that the headers may be in an old format, in which spaces
delimit names. This option actually turns on an adaptive algorithm: If
any recipient address contains a comma, parenthesis, or angle bracket, it
will be assumed that commas already exist. If this flag is not on, only
commas delimit names. Headers are always written with commas
between the names.

Paddr Add “postmaster” address addr to the “Cc:” list of all error messages.

Qdir Use dir as the queue directory.

qfactor Use factor as the multiplier in the function to decide when to queue
messages rather than attempting to send them. This value is divided by
the difference between the current load average and the load average
limit (x option) to determine the maximum message priority that will be
sent. This value defaults to 10000.

rtime Cause a timeout on reads after time interval.

Sfile Log statistics in the named file.

Flags, Options, and Files

251

s Be super-safe when running; that is, always instantiate the queue file,
even if attempting immediate delivery. sendmail always instantiates the
queue file before returning control to the client under any circumstances.

Ttime Set the queue timeout to time. After this interval, messages that have not
been successfully sent are returned to the sender.

un Set the default user ID for mailers to n. Mailers without the S flag in the
mailer definition run as this user.

v Run in verbose mode.

xLA Use LA as the system load average limit when deciding whether to
queue messages rather than attempting to send them.

XLA When the system load average exceeds LA, refuse incoming SMTP
connections.

yfactor This factor is multiplied by the number of recipients and added to the
priority. Therefore, this value penalizes messages with large numbers of
recipients.

Y Deliver each job that is run from the queue in a separate process. Use
this option if you are short of memory, since the default tends to
consume considerable amounts of memory while the queue is being
processed.

zfactor This factor is multiplied by the message class (determined by the
Precedence field in the user header and the precedence declaration lines
in the configuration file) and subtracted from the priority. Therefore,
messages with a higher class are favored.

Zfactor This factor is added to the priority every time a message is processed.
Therefore, this value penalizes messages that are processed frequently.

Mailer Flags

The following flags can be set in the F field of a mailer definition in the sendmail.cf file:

B Don’t wait for SMTP responses.

C If mail is received from a mailer with this flag set, any addresses in the
header that do not have an “at” sign (@) after being rewritten by rule set
3 have the “@domain” clause from the sender appended. This flag
allows mail with headers of the form

252

Appendix B: IRIX sendmail Reference

From: usera@hosta
To: userb@hostb, userc

to be rewritten automatically as

From: usera@hosta
To: userb@hostb, userc@hosta

D This mailer expects a “Date:” header line.

E Escape any lines beginning with “From” in the message with a “>” sign.

e This mailer is expensive to connect to; usually, avoid connecting. Any
necessary connection occurs during a queue run.

F The mailer expects a “From:” header line.

f The mailer expects a -f from flag, but only if this is a network forwarding
operation. (That is, the mailer will give an error if the executing user
does not have special permissions.)

h Uppercase should be preserved in hostnames for this mailer.

I This mailer can use certain special SMTP features when transferring
mail to another system running sendmail. This option is not required; if
it is omitted, the transmission still operates successfully, although
perhaps not as efficiently as possible.

L Limit the line lengths as specified in RFC 821.

l This mailer is local; final delivery will be performed.

M This mailer expects a “Message-Id:” header line.

m This mailer can send to multiple users on the same host in one
transaction. When a $u macro occurs in the argv part of the mailer
definition, that field will be repeated as necessary for all qualifying
users.

n Do not insert a UNIX style “From” line on the front of the message.

P This mailer expects a “Return-Path:” line.

p Use the return path in the SMTP “MAIL FROM:” command rather than
just the return address; although this usage is required in RFC 821, many
hosts do not process return paths properly.

r Same as f, but sends an -r flag.

Flags, Options, and Files

253

S Don’t reset the user ID before calling the mailer. Used in a secure
environment where sendmail runs as root, this option could avoid forged
addresses. This flag is suppressed if given from an “unsafe”
environment (such as a user’s mail.cf file).

s Strip quotation characters from the address before calling the mailer.

U This mailer wants UNIX style “From” lines with the UUCP-style
“remote from <host>” on the end.

u Preserve uppercase characters in user names for this mailer.

V Make all addresses UUCP !-relative to recipient or sender nodes.
Addresses of the form recipient_host!foo!bar are rewritten as foo!bar.
Addresses of the form mumble!grumble are rewritten as
sender_host!mumble!grumble.

X This mailer expects to use the hidden-dot algorithm as specified in RFC
821; basically, any line beginning with a dot has an extra dot prepended
(to be stripped at the other end). This action ensures that a line
containing a dot will not terminate the message prematurely.

x This mailer expects a “Full-Name:” header line.

Support Files

This section provides a summary of the support files that sendmail creates or generates.

/usr/lib/sendmail
The sendmail program.

/usr/lib/sendmail.cf
The configuration file in textual form.

/usr/bsd/newaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt.
Running this program is equivalent to giving sendmail the -bi flag.

/usr/lib/sendmail.fc
The configuration file represented as a memory image (the “frozen
configuration”).

/usr/lib/sendmail.hf
The SMTP help file.

254

Appendix B: IRIX sendmail Reference

/usr/lib/sendmail.st
A statistics file; need not be present.

/usr/lib/sendmail.killed
A text file that contains the names of all known “dead” hosts (hosts that
no longer exist or cannot receive mail for some reason).

/usr/lib/aliases The text version of the alias file.

/usr/lib/aliases.{pag,dir}
The alias file in ndbm format.

/var/spool/mqueue
The directory in which the mail queue and temporary files reside.

/var/spool/mqueue/qf*
Control (queue) files for messages.

/var/spool/mqueue/df*
Data files.

/var/spool/mqueue/tf*
Temporary versions of the qf files, used during queue-file rebuild.

/var/spool/mqueue/nf*
A file used when a unique ID is created.

/var/spool/mqueue/xf*
A transcript of the current session.

/usr/bin/mailq Prints a listing of the mail queue; using this file is equivalent to using the
-bp flag to sendmail.

/etc/init.d/mail Shell script for starting and stopping the sendmail daemon.

/bin/mail Program that sendmail uses as the “local” mailer.

Debugging Flags

The following list includes all known debugging flags. Flags that are especially useful
are marked with an asterisk (*).

0.1* Force daemon to run in foreground.

0.4* Show known names for local host.

0.15 Print configuration file.

Flags, Options, and Files

255

0.44 Have printav() print addresses of elements.

1.1* Show mail “From” address for locally generated mail.

2.1* Print exit status and envelope flags.

5.4 Print arguments to tick() calls.

5.5 Print arguments to setevent() and clrevent() calls.

5.6 Print event queue on tick() call.

6.1 Indicate call to savemail() or returntosender() error processing.

6.5 Trace states in savemail() state machine.

7.1* Print information on envelope assigned to queue file.

7.2* Print selected queue-file name.

7.20* Print intermediate queue-file name selections.

8.1* Print various information about resolver calls.

9.1* Show results from gethostbyaddr() call.

10.1* Print message delivery information.

11.1 Indicate call to openmailer().

12.1* Display remotename() input and output.

13.1 sendall()—print addresses being sent to

13.3 sendall()—print each address in loop looking for failure.

13.4 sendall()—print who gets the error.

14.2 Indicate commaize() calls.

15.1 Indicate port or socket number used by getrequests().

15.2 Indicate when getrequests() forks or returns.

15.15 Set DEBUG socket option in getrequests().

16.1* Indicate host, address, and socket being connected to in
makeconnection().

16.14 Set DEBUG socket option in makeconnection().

18.1* Show SMTP chatter.

18.100 Suspend sendmail after reading each SMTP reply.

256

Appendix B: IRIX sendmail Reference

20.1* Display parseaddr() input and output.

21.2* Show rewrite rule-set subroutine calls/returns and input/output, and
display run-time macro expansions.

21.3* Indicate rewrite subroutine call from inside rewrite rule.

21.4* Display rewrite results.

21.10* Indicate rule failures.

21.12* Indicate rule matches and display address-rewrite steps.

21.15* Show rewrite substitutions.

21.35 Display elements in pattern and subject.

22.36 Display prescan() processing.

22.45 Display more prescan() processing.

22.101 Display even more prescan() processing.

25.1* Show “To” list designations.

26.1* Show recipient designations/duplicate suppression.

26.6* Show recipient password-match processing.

27.1* Print alias and forward transformations and errors.

27.3 Print detailed aliaslookup() information.

30.1 Indicate end of headers when collecting a message.

30.2 Print arguments to eatfrom() calls.

30.3 Indicate when adding an “Apparently-To” header to the message.

31.6 Indicate call to chompheader() and header to be processed.

32.1 Display collected header.

33.1 Display crackaddr() input/output.

35.9* Display macro definitions.

35.24 Display macro expansions.

36.5 Show symbol table processing.

36.9 Show symbol table hash function result.

37.1* Display options as set.

Flags, Options, and Files

257

37.2* Show rewrite class loading.

40.1* Indicate queueing of messages and display queue contents.

40.4* Display queue control file contents.

40.5* Display information about message-controlling user.

41.2 Indicate orderq() failure to open control file.

45.1 Indicate setsender() calls.

50.1 Indicate dropenvelope() calls.

51.4 Don’t remove transcript files (qxAAXXXXX files).

52.1 Indicate call to disconnect(); print I/O file descriptors.

52.5 Don’t perform disconnect.

60.1* Print information about alias database accesses.

61.1* Print information about MX record lookups.

